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A strong non-linear dynamic model is developed to investigate the dynamic
characteristics of cutting processes. First, the multiple scales method is applied to study the
weak non-linear stability, and then the numerical method to solve the problems of strong
non-linearity in cutting processes. The former shows that the subcritical bifurcation
predicted by the weak non-linear theory is compatible with that predicted by the strong
non-linear theory. The numerical study reveals that different cutting thicknesses result in
qualitatively different behavior of the finite amplitude instability. Going from small cutting
thicknesses to the large ones, the behavior of the finite amplitude instability can be divided
into an unconditional stable region, a conditional stable region, a periodic region and a
breakdown region.
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1. INTRODUCTION

Due to the non-rigid structures of a cutting system, chatter will result in inaccuracy of
cutting. Therefore, to understand the chatter in cutting processes is a very important
subject, that has been studied for a long time. As far as linear theories of chatter are
concerned, the stability boundary has been found by Tobias [1], Merritt [2], Kato [3] and
Wu [4] to distinguish between the linear stable and unstable regions in the space of the
cutting parameters. However, such a linear theory cannot explain the behavior of finite
amplitude instability, because a theoretical explanation of this behavior must be based on
the non-linearities in the cutting processes. Non-linear cutting force due to higher order
chip thickness variation is considered to be the reason for the finite amplitude vibrator
[5, 6], and the multiple regenerative effect which is caused by the separation of the vibrating
tool from the workpiece plays an important role in non-linear dynamic cutting [6-9].
Tobias [1], Hanna [5] and Shi [6] found that the cutting systems exhibit subcritical
bifurcations. That is, the cutting process is dynamically stable when the level of disturbance
is low, but unstable when it becomes higher. In their studies, the non-linear cutting forces
were assumed to be a function of chip thickness only. Later, Lin and Weng [10, 11] showed
that adding the effects of variation of shear angle strongly affected the dynamic cutting
forces and cutting stability, and they found supercritical bifurcations only.

Although non-linear stability in metal cutting has been developed for a long time, only
the weak non-linear theory was applied to the study of dynamic cutting processes. If the

0022-460X/97/230363 + 10 $25.00/0/sv960923 © 1997 Academic Press Limited



364 C.-C. HWANG ET AL.

cutting systems are far from critical conditions or if the amplitudes of the disturbances are
large enough, the weak non-linear theory may break down. Therefore, in order to obtain
more accurate results, the cutting systems need strong non-linear analysis. In this paper,
a multiple scales method is applied to the study of the weak non-linear dynamics in cutting
processes. Then the numerical results of the strong non-linear equation help us to check
the correctness of the weak non-linear theory. Furthermore, the strong non-linear theory
can construct the global cutting phenomenon and cover the weak non-linear theory in the
local regions around the critical conditions.

In this paper, we will develop a theory of strongly non-linear dynamics of cutting
processes in the two-dimensional case. We find that the subcritical bifurcation predicted
by the weak non-linear theory is consistent with that predicted by the strong non-linear
theory; and the strong non-linear analysis can also predict the complex behavior of the
cutting system.

2. DYNAMIC CUTTING MODEL

In this section, we will propose a two-dimensional non-linear dynamic cutting model,
as shown in Figure 1. It can be formulated mathematically as follows:

mx* 4+ ¢ X* + kx* = F¥ — F¥
(ot xF—xdsin(B— o) fud*zsin (B — a)

sin ¢ cos (¢ + B — ) sin ¢ cos (¢ + f—a)’ (1)
my* + ¢, y* + k,y* = Ff — Ff
_ (ot xff —x¥)d*1,cos (f—a) _ fod*z, cos (B — o) @)

sin ¢ cos (¢ + f — ) singcos (¢ + f—a)’

where x# = x*(t — T), m is the equivalent mass of tool block, c, is the damping factor in
the x direction, ¢, is the damping factor in the y direction, k, is the stiffness constant of
the machine structure, k, is the stiffness constant of the machine structure, F¥ is the
dynamic cutting force in the x direction, F}* is the dynamic cutting force in the y direction,
F¥ is the steady cutting force in the x direction, F¥ is the steady cutting force in the y
direction, f, is the feed rate, d* is the width of cutting, 7, is the shear stress, « is the rake

Workpiece

Figure 1. A model of chip formation in orthogonal cutting.
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angle, f8 is the friction angle, ¢ is the shear angle, and ¢ is the steady shear angle (note
that a superscript asterisk represents a dimensional quantity).
Then a group of dimensionless quantities are introduced:

x¥ lfo = xr, xX*lfo=x, y¥lfo=y, t*w,, =t,
é.\' = C.\‘/(Z\/ k.\'m)a d*/ﬁ) = d’ CJ'/C-Y = l]’ k‘/kY = 12’ (3)

where o, is the natural frequency in the x direction, and &, is the damping ratio of the
cutting tool system in the x direction.

After substituting the relations in (3) into equations (1) and (2), the dimensionless
equation of motion becomes

x+2€\x+x:Fv_F‘c

_ d(l + X7 — X)fotT, sin (f — a) iy ﬁ]fs sin (ﬁ — o) )
ksin ¢ cos(¢p + f — a) ksingcos(p+f—oa)’

y+20¢y+Ly=F —F

_d(l + Xr — X)foT, COS (ﬁ_“)fd fot, cos (f — o) 5)
"7 ksingcos(¢p+ B —a) ksingcos(p+p—a)’

where x; — x + 1 is the change of feed rate due to a regenerative effect.

Equations (4) and (5) are strong non-linear equations. The cutting parameters in
equations (4) and (5) must be specified by experimental measurement, which is shown in
Appendix A. In the following section, we will use the above equations to study the linear
and non-linear dynamics of cutting processes.

3. LINEAR AND NON-LINEAR ANALYSIS

Since the stiffness and damping effects in the y direction are much larger than those in
the x direction [12], for the sake of convenience and simplicity, we only consider the
equation of motion in the x direction. Following Lin [10], we obtain the weakly non-linear
equation of the shear angle variation and the regenerative effect:

£ 4+ 288 + x = Ad(xr — x)— Bd(r — $)[1 + (xr — )] + Cd(r — xV{1 + (xr — x)]
—Dd(ir — %) + BEU[(r) — X (6)

The parameters A, B, C, D and E are expressed as follows:

2
A=F B=—(%\E c=1(ZE)\ B
0x 5 27\ 0x? .
__L1(oF\ _ oo
D_3/<6)€3>¢E’ E= 7 @)

By way of the linear stability analysis and by neglecting the non-linear portion of
equation (6), the linearized equation becomes

X+ 28X 4+ x = Ad(xr — x)— Bd(xr — X). (8)
When we use normal mode analysis to solve equation (8), the solution is assumed as

x =TI exp (iAt)+c.c. 9)
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where I' is an amplitude, 4 = 4, + i4; is a complex frequency, 7T is a rotating period of
spindle, and c.c. denotes the complex conjugate. Substituting equation (9) into equation
(8), we can separate the real and imaginary parts of the characteristic equation as follows:

Re: — A2 + 1 = Ad(cos 2, T — 1)— Bd), sin AT, (10)
Im: 2é4, = — Ad sin A, T — BdA.(cos 4, T — 1). (11)

After choosing the chatter frequencies A, near the natural one and specifying the rotating
periods T, the critical cutting thickness d, can be found from equations (10) and (11). That
is, the linear stability (instability) condition of steady cutting is d < d.(>d,).

The linear stability analysis can only predict the linear behavior of the cutting processes.
However, the finite amplitudes of the chatter that is caused by the non-linear cutting forces
cannot be developed by linear stability theory. Therefore, in weak non-linear stability
analysis, we used the perturbation method of multiple scales:

x(ty, th, ) = ex) + X2 + x5+ - - -,
xr(to, th, 1) = exp + X + X + - -,

d 0 0 0
& "o e TRa T

e _ i 2o 200 N
dr oz +2 onon ¢ <azo on T aﬁ) + ' (12)

Since the cutting thickness is an important parameter that strongly affects the dynamic
stability, it can be taken as a perturbed quantity about the critical conditions. This can
be expressed as

d=d.+ &p, (13)

where d. is the critical cutting thickness, ¢’x is a small perturbed quantity, and
u = sign (d — d.). Then, substituting equations (12) and (13) into equation (6) and solving
equation (6) order by order, we can obtain the final form of I" as follows:
or u . . 5
a—b—Z(X—lY)F—(L+1M)d(|F|F:O, (14)
where X, Y, L and M are shown in Appendix B.

The Landau type equation (14) can predict the weak non-linear dynamics near the
regions of linear critical states. Weak non-linear stability analysis is carried out to study
whether the finite disturbances in the linear stable region will cause instability (subcritical
bifurcation) and whether the subsequent non-linear evolution of the disturbances in the
linear unstable region will develop into another equilibrium with finite amplitude
(supercritical bifurcation). Here the conditions of the subcritical (supercritical) bifurcations
areu= —1land L > 0 (u=1and L < 0), and the corresponding subcritical threshold (or
supercritical finite) amplitude is equal to {[(d. — d)X]/Ld.}"*. According to our numerical
evaluation, the cutting system only exhibits subcritical bifurcation (L > 0), which is the
same as was found in Hanna’s [5] and Shi’s [6] research.

In addition, when the cutting system is far from the critical conditions or when the
amplitudes of the disturbances are large enough, the weak non-linear theory may break
down. For this reason, the only way to obtain more accurate evaluation is to use the full
non-linear equation to study the strong non-linear dynamics of the cutting system. Due
to the existence of the complicated non-linear term in dynamic equation (4), the numerical
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Figure 2. The local subcritical bifurcation diagram: V' = 150 m/min, f; = 0-101 mm, 7' = 33-2. ——, Weak
non-linear threshold amplitude; ----, strong non-linear threshold amplitude.

method introduced by Jemielniak and Widota [13], which is based on the determination
of displacements, velocities and accelerations of the system in successive small periods, is
applied to solve this equation with small initial disturbed conditions. When the multiple
regenerative effect is considered, the position of the top surface of the chip to be removed
is as follows: For xy—x+1>0, x;=x, and for x; — x4+ 1 <0, x; = xr+ 1.

4. RESULTS AND DISCUSSION

Here the characteristics of cutting stability under different feed rates, cutting velocities
and cutting thicknesses are displayed and discussed first. Because the weak non-linear
theory shows that only the subcritical bifurcation is possible, the linear stable region can
be divided into two parts: one is the unconditional stable region and the other is the
conditional stable region. In the unconditional stable region, the systems remain stable,
although initial disturbances are finitely large. However, in the conditional stable region,
the finite amplitude chatters will occur when initial disturbances exceed the threshold
amplitude. The local subcritical bifurcation diagram predicted by the weak and strong
non-linear theories is displayed in Figure 2. It shows that the subcritical bifurcation
predicted by the weak non-linear theory is qualitatively consistent with that predicted by
the strong non-linear theory, while the threshold amplitude of the strong non-linear theory
is quantitatively larger than that of the weak non-linear one. In addition, the numerical
results of the strong non-linear equations show that, in the conditional stable and linear
unstable regions, the unstable disturbances will evolve into periodic states with finite
amplitudes. However, if the system in the linear unstable regions is far from the linear
critical condition and beyond another critical condition, any disturbance will grow to
become infinite, and the cutting processes will break down. Here, in Figure 3 is shown the
global bifurcation diagram predicted by the strong non-linear theory. The dashed line
represents the initial threshold amplitude, and the solid line indicates the mean value of
the final amplitude of periodic states. The periodic states calculated by way of the
numerical method are always multiple ones. Since the variations of the amplitude,
compared with their mean values, are very small, the multiple periodic states are not shown
in Figure 3.
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Figure 3. The global bifurcation diagram: V' = 150 m/min, fo = 0-101 mm, 7 = 33-2. ——, Final amplitude of
periodic states; ----, initial threshold amplitude.

From a global point of view, there are four types of dynamic behavior in cutting
processes. They are steady unconditional stable states, steady conditional stable states,
periodic states and breakdown states. The global stability basin in the 7—d plane is shown
in Figure 4. Generally speaking, for the fine cut (small cutting width), the operation
conditions must be set in the unconditional stable region, while for rough cutting (large
cutting width), they may be set in the periodic regions. With regard to the breakdown

35
E Breakdown
r region
i
30 1\, \ Periodic

N region

s
————k e
’

20

Unconditional Conditional
stable region stable region
15 \HHH\H\HHHHH\H\H\HHHH‘\\H\H\HH\\H\HH\HH\\H\H\H‘HH\H\H\H\HHHHHHHHHHH
30 35 40 45
T
Figure 4. The cutting stability chart in the 7—-d plane. ——, Linear neutral stable line; - - - -, the lower limit

line of the periodic region; - - -, the upper limit line of the periodic region.
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Figure 5. The phase planes of different types of motion: V' = 150 m/min, fo=0-101 mm, 7 =37,
x(0) = y(0) = y(0). (a) d=22, x(0)=09; (b) d=227, x(0)=03; (¢c) d=227, x(0)=09; (d) d=26,
x(0) = 0-3; (e) d =31, x(0) = 0-01.

region, no other operational condition can be set. On the other hand, in Figure 5 are shown
the phase planes of the four types of motion mentioned above. First, an example of
an unconditional stable state is shown in Figure 5(a). It is found that although the
initial disturbance is as high as 0-9, the trajectory in the phase plane is convergent to zero.
In addition, examples of the conditional stable region are shown in Figures 5(b) and 5(c).
In Figure 5(b), we find that the trajectory of the phase portrait is convergent to zero when
disturbances are small, but in Figure 5(c) it is shown that the path of the solution can
develop into another limiting cycle when the initial disturbances are large. As shown in
Figure 5(d), the periodic states will occur when the cutting thickness is larger than the
linear critical cutting thickness. Furthermore, when the cutting thickness is larger than a
non-linear critical one, the solution will then diverge to infinity even if the initial
disturbances are very small, as shown in Figure 5(e).

Finally, the power spectra of the periodic states predicted by the numerical method and
measured by the experimental method are shown in Figure 6, which represents the single
and multiple periodic solutions. It is found that the principal spectrum densities of both
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numerical and experimental methods are located near the natural frequency. The
experimental data perhaps contain some noise, so there are random spectral distributions
in all modes in Figures 6(a, ii) and 6(b, ii).

5. CONCLUSIONS

In this paper, we have developed a theory to predict the strongly non-linear dynamics
in cutting processes. The perturbation method, together with multiple scales, is adopted
to study the weak non-linear stability, and the numerical method is used to solve the full
non-linear system of the cutting process.

It has been shown that the subcritical bifurcation predicted by the weak non-linear
theory is consistent with that predicted by the strong non-linear theory. This subcritical
bifurcation also constitutes Hanna’s [5] and Shi’s [6] experimental results. In addition the
complex behavior of the cutting system can be found through the strong non-linear
analysis. We have found that the cutting parameter space can be divided into four parts;
i.e., the unconditional stable region, the conditional stable region, the periodic region, and
the breakdown region. The rough cut cannot be set in the breakdown region, where the
cutting operation is not available.
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Figure 6. A comparison of the power spectral densities between the experimental and numerical results. (a)
(i) = 150 m/min, fo = 0-101 mm, d = 29-70, T = 39; (ii) V' = 150 m/min, fo = 0-101 mm, d = 23-76, T = 37. (b)
Hanning spectra in the X direction.
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APPENDIX A: EXPERIMENTAL MEASUREMENTS

The main purpose of this experiment is to find 7, in terms of the cutting velocity, the
feed rate, and the spectrum of chatter in dynamic cutting.

First, the model testing analysis leads to the natural frequency, the damping ratio and
the spring constant. They are, respectively,

,, = 2030 rad/s, £, =0-087, k. = 25000 Nt/mm; (Ala)
,, = 3760 rad/s, &, = 0041, k, = 85700 Nt/mm. (Alb)

In this experiment, carbide-insert tools are selected, with side rake angle = 5°, side
cutting angle = 0° and side clearance angle 6°, and the workpieces are of S45C.

The conditions of cutting test are as follows: feed rate, 0-101, 0-133, 0-177 mm/rev;
cutting width, 2, 2-5, 3, 3-5, 4, 4-5 mm; cutting speed, 150, 200, 250, 300 m/min.
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The cutting forces are found by means of a dynamometer, and the steady shear angle
can be obtained through the geometric relationship of the cutting system. Combining the
shear angle (¢), the side rate angle (z) and the friction angle (f5), we have the following
results [2, 14]:

K=2¢+f—o=7974° + 3-07". (A2)

The curve fitting method is then applied to find the relation of 7, in terms of the cutting
velocity and the feed rate, and this equation can be expressed as follows:

1, = {1:1748 x 10-[V(min/m)P—7-1133 x 10~'[(min/mm)]—9-1701
x 107 fo/mm]® + 1-8638 x 10°] fo/mm]+387-25}(Nt/mm?). (A3)

APPENDIX B

X =[(4,C; — BD)I(C] + Di), Y = [(4,D; + BC)I/(CT + Di),

L =[(—Bey+ CAhy + 3D2k)Cr + (— Bfu + Citkn — 3D2hr)Di)/(C} + D}),
M = [(—Bfu+ Cilky — 3D2h))C; — (— Bey + CA2hy + 3DAk)Di)/(C} + D7),
A; = Ad.(cos A, T — 1)— Bd.A, sin A, T, B; = Ad, sin A, T + 2,Bd.(cos 2, T — 1),
C; =2¢ + Bd.(cos 4, T — 1), D;=2),— Bd,.sin AT,

U = (aic; + bidy)/(ci + df), V = (bier — ady)/(ci + df),

a; = —{2Bd.(cos 1, T — 1)sin ,, T + Cd.[(cos AT — 1)* — sin* 1,T).}},

b, = Bd.[sin* A, T — (cos A, T — 124, + 2Cd. A} (cos 2, T — 1) sin A, T,

¢ = —4)2+ 1 — Ad.(cos 22T — 1)+2Bd.A, sin 21, T,

dy =4, + Ad, sin 20, T + 2Bd.J,(cos 22, T — 1),

e; = (cos 24, T — 1)(cos 4, T — 1)+ (sin 24, T) sin 4, T,

fi =(cos 24T — 1)sin A, T — (cos A, T — 1) sin 24,7,

hr = [(cos 4, T — 1)> —sin* 1, T](cos A, T — 1)+2(cos 4, T — 1) sin* A, T,

ki =[(cos 4, T — 1)> — sin®> 1, T] sin A, T — 2(cos A, T — 1)*sin A, T,

en = —[(Ufi + Ve, + EA} sin LT,  fu= (Ue;— Vfi)l — E(cos A, T — 1)A},
hy = hy + 4(Ue; — V), ki =k + 4Uf; + Vey).



